首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1376篇
  免费   364篇
  国内免费   763篇
测绘学   10篇
大气科学   962篇
地球物理   170篇
地质学   807篇
海洋学   342篇
天文学   11篇
综合类   43篇
自然地理   158篇
  2024年   15篇
  2023年   38篇
  2022年   74篇
  2021年   97篇
  2020年   87篇
  2019年   97篇
  2018年   96篇
  2017年   80篇
  2016年   73篇
  2015年   90篇
  2014年   120篇
  2013年   118篇
  2012年   139篇
  2011年   108篇
  2010年   115篇
  2009年   137篇
  2008年   121篇
  2007年   123篇
  2006年   107篇
  2005年   89篇
  2004年   89篇
  2003年   81篇
  2002年   57篇
  2001年   58篇
  2000年   48篇
  1999年   47篇
  1998年   40篇
  1997年   37篇
  1996年   38篇
  1995年   19篇
  1994年   16篇
  1993年   17篇
  1992年   7篇
  1991年   7篇
  1990年   4篇
  1989年   6篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1954年   2篇
排序方式: 共有2503条查询结果,搜索用时 15 毫秒
101.
沈世伟  吴飞  甘霖  姜满 《探矿工程》2021,48(1):120-128
对不同初始饱和度红砂岩冻融循环前后进行物理及力学试验研究,探讨初始饱和度对红砂岩冻融损伤的影响。本文设定红砂岩试样初始饱和度为20%、40%、60%、80%、100%,冻融次数设定为20次,对冻融前后试样分别测定质量、纵波波速以及进行单轴压缩试验。试验结果表明:1)冻融后不同初始饱和度红砂岩的物理性质发生变化,纵波波速降低、质量减小,但变化程度不同;2)随饱和度的增大,试样经冻融后峰值强度和弹性模量均呈降低趋势,但只有饱和度大于60%时,降低趋势较明显。本文研究为寒区隧道及地下工程建设以及岩土地质灾害监测与治理提供理论依据和试验基础。  相似文献   
102.
对桂北豆乍山岩体钻孔样品进行了放射性生热元素含量、岩石密度和岩石热导率测试。结果显示该岩体花岗岩U平均含量为17.49×10~(-6),Th平均含量为27.54×10~(-6),K_2O平均含量为4.64%,放射性生热率平均值6.46μW/m~3,高于地壳平均值及大部分华南其他岩体的放射性生热率值;岩石密度平均在2.57 g/cm~3左右,与世界范围内花岗岩密度的平均值大致相同;岩石热贡献率主要来自Th和U的放射性衰变热,而U的贡献率相对更高。研究区岩石热导率平均为3.389 W/mK,与目前已知的花岗岩热导率平均值相近。通过本文及周边其他岩体的研究结果,结合前人资料,推断豆乍山岩体所在的苗儿山地区,乃至桂北地区的地幔热流值低于地壳热流值贡献,属于"热壳冷幔"型岩石圈热结构。根据豆乍山岩体放射性生热元素和生热率的优势,认为其干热岩开发潜力较大,可对其进行进一步干热岩评价工作。  相似文献   
103.
为分析寒区渠基黏土热参数的随机分布特征及概率分布模型,以寒区渠基黏土的导热系数为样本,结合经典分布拟合法、多项式逼近法、最大熵法和正态信息扩散法,分别对寒区渠基黏土热参数的概率分布规律进行了研究。首先通过分析热参数的离散性,并比较概率分布曲线、拟合检验值和累计概率分布值,对不同方法描述热参数随机性的优劣进行了评价;然后,基于寒区渠基黏土热学参数对温度的敏感性,提出了一个可以达到理想拟合精度的寒区渠基黏土热参数概率推断的区间取值标准。研究结果表明:寒区渠基黏土的热参数具有随机变量的特征;正态信息扩散法可以描述热参数样本的随机波动性;在4种方法中,正态信息扩散法的拟合精度最高。使用3.5σ法,将[μ-3.5σ,μ+3.5σ](μ为随机变量的均值,σ为标准差)作为概率函数推断时的取值区间,同时考虑偏度的影响,可使得累计概率值达到1.000 0的精度,能够较准确地推断热参数的概率分布函数。  相似文献   
104.
利用2016年1月1日至31日的FNL资料,对一次极端寒潮天气过程进行了等熵位涡分析。结果表明:高位涡主体由极涡分裂而来,前面低位涡区的阻挡与后侧低位涡大气的北上加强了位涡的经向交换,高位涡空气不断由极地向南输送,使得高位涡主体不断加强维持。高位涡在由北向南移动的同时,也由对流层顶向下输送。此次寒潮过程主要有3股冷空气由上而下发展,位置均在高空急流轴的北侧,最南端的一股下沉气流最旺盛,这是其与高空急流相互作用的结果。强盛的冷空气下沉使得寒潮影响范围触及我国华南地区。随着高位涡的向南向下传输,一方面引起对流层中高层低涡系统迅速发展,当它移到中国东部地区时,东亚大槽迅速加深,使槽后强冷空气迅速向南爆发;另一方面,在高位涡输送的过程中,其后侧有强烈的下沉运动,使得地面冷高压快速发展,导致强寒潮天气的爆发。  相似文献   
105.
2016年9月28日1617号台风"鲇鱼"登陆后由台风本体环流和外围环流引发了不同性质的暴雨,这是本次秋季登陆台风暴雨预报的难点。利用常规气象观测资料以及NCEP的1°×1°再分析资料等,对不同性质暴雨的成因进行了诊断对比分析。结果表明:浙江东南部对流性降水和江西南部稳定性降水的大气层结结构具有明显的差异。中高纬度低槽距离台风较远,冷空气主要从低层入侵台风西北侧,破坏台风低层的暖心结构。台风外围中层干冷空气随东南风向浙江东南部输送,并叠加在低层暖湿气流之上,形成上冷下暖的不稳定层结,同时在对流层上层有干冷空气下沉至台风环流中下层(干侵入),导致浙江文成附近出现了局地特大暴雨。江西南部由于低层被湿冷空气占据,层结较为稳定,降水发展平缓。低空东南急流为台风外围环流暴雨提供了充足的水汽,浙江东南部地形对降水起到了增幅作用。不稳定层结及中层冷空气的输送对对流性暴雨的激发作用可以为登陆台风降水性质和强度预报提供参考依据。  相似文献   
106.
自20世纪80年代后期以来,我国频繁出现暖冬,直到2004年以后这种状况出现明显的变化,冷冬出现的频次明显增多了。在全球增暖、北极海冰减少明显的背景下,冬季极端严寒的强度非但没有减弱反而似乎还在增强,造成灾害性的影响也越发引人关注。在上述背景下,2012年1月、2016年1月在东亚发生了两次极端严寒事件。本文的目的就是通过合成和相关分析,研究这两次极端严寒事件演变的主要特征,及其与北极增暖的可能联系。这两次极端严寒事件的环流演变截然不同。对于2012年1月的极端严寒事件,海平面气压异常主要呈现由东向西传播,在演变过程中,阿留申区域海平面气压超前西伯利亚高压,因此大气环流的下游效应起主要作用。对于2016年1月的极端严寒事件,冷空气主要由西北向东南传播。两次极端事件的主要降温区域的移动路径截然不同。2012年1月冷空气爆发以后主要在亚洲大陆中、高纬度维持并向西传播,其南传影响亚洲低纬度区域明显弱于2016年的冷事件。而2016年1月的主要降温区以沿东亚向南移动为主,强降温区直接南下至热带区域。两次极端严寒事件爆发前期大气环流演变的共同点:中、高纬度区域环流能量交换活跃,表现为中纬度高度脊加强北伸,从而把较低纬度的暖空气输送至北极区域,高纬度区域对流层中层呈现多极结构。这种多极空间结构是亚洲冷空气向南爆发的重要前兆信号。冬季北极阶段性增暖过程首先是中纬度高度脊加强北伸的结果。对影响东亚的极端严寒过程,乌拉尔附近区域的高压脊以及位于北美西部的高压脊加强北上、协同演变是至关重要的。2016年1月东亚极端严寒过程与2015年12月末北极快速增暖没有必然联系。  相似文献   
107.
本文利用NCEP分析资料、多普勒雷达观测资料、常规气象观测资料以及数值模拟结果,对2016年7月30日发生在华北、辽宁附近的一次强飑线过程中后向入流的演变及成因进行研究。结果表明,此次飑线发生在中纬度新生冷涡槽前,低层有水汽辐合区和地面辐合线对应,且过程中伴有较强的对流有效位能释放。飑线后部中层(冷涡槽后)一直存在α中尺度西风大值带,此大风速带造成了上下层相反的水平涡度,并形成喇叭形环流结构,该结构不同于经典飑线结构。飑线后部水平方向上水平涡度分布不均匀,并形成水平涡度旋度上正下负的分布,即导致中层强风区上部上升运动、下部下沉运动,该下沉运动引发飑线中的后向入流和低层强风速带形成。在中层,飑线的后部边缘始终有较强的风速大值带伴随飑线的发展,该大值带的形成与对流强弱和非热成风涡度有关,对流过程中低层非热成风涡度为负,中上层非热成风涡度为正,导致飑线后部中层西风加速和低层西风减速,有利于后向入流的发展和飑线的维持,当对流减弱时,非热成风涡度与后向入流均减弱。文中给出了后向入流形成演变的概念模式。  相似文献   
108.
利用天气观测资料和NCEP再分析资料对2004-2013年5-9月影响山东的切变线天气特征和环流形势进行了分析。将影响山东的切变线按热力性质分为冷切变线和暖切变线,10a间影响山东的切变线共发生59次,其中暖切变线出现43次,占切变线总发生次数73%;冷切变线出现16次,占切变线总发生次数27%。切变线发生频数7月最多,6月次之,分别占切变线总数的35.6%和23.7%,9月最少,约占0.05%。影响山东典型切变线的发生与副高关系密切,冷切变线多出现在西风槽东移受阻,在对流层低层逐渐形成,暖切变线则出现在西风带小高压与副高合并,副高北抬时形成。针对2次典型冷暖切变线暴雨天气过程对比分析其暴雨落区、雷达回波特征和动力机制等,结果发现:暖切变线降水的强度、暴雨范围和持续时间明显大于冷切变线降水。暖切变线暴雨的GPS可降水量在强降雨出现前8h快速上升,可降水量峰值对应地面降雨大值,对地面降雨变化反映不敏感,物理量呈垂直分布,强回波单体基本位于暖切变线雨带的中间。冷切变线暴雨的GPS可降水量短时间内增幅大,地面强降雨在峰值出现1h后发生,对地面降雨变化反映较敏感,物理量从低层到高层向北倾斜且上升运动区较深厚,回波单体位于切变线南侧。  相似文献   
109.
利用FNL及常规资料,对比分析了2010年2月22—24日(过程Ⅰ)和2015年12月10—13日(过程Ⅱ)天山北坡2次暴雪过程。结果表明,暴雪区上空θse锋区陡立和条件性对称不稳定及次级环流是形成暴雪的主要机制。不同点是:过程Ⅰ暴雪产生在西西伯利亚低涡底部强锋区上,南北支短波槽汇合的区域,冷高压为西北路径;过程Ⅱ是乌拉尔山大槽东移北收,冷高压为偏西路径;2次过程在温压的时间演变上有显著的区别。在高低空配置上也有明显的区别:过程Ⅰ 500 hPa以下为暖平流,以上为冷平流,低层为暖湿结构;过程Ⅱ 700 hPa以下为冷平流,700—600 hPa为暖平流,低层有湿冷空气锲入。过程Ⅰ暴雪区位于θse锋区上,锋区低层强,中高层弱;过程Ⅱ暴雪区位于θse锋区中后部,锋区低层弱,中高层强。水汽输送和输入量及比湿过程Ⅰ大于过程Ⅱ。  相似文献   
110.
The passive Eastern Continental Margin of India (ECMI) evolved during the break up of India and East Antarctica in the Early Cretaceous. The 85°E ridge is a prominent linear aseismic feature extending from the Afanasy Nikitin Seamounts northward to the Mahanadi basin along the ECMI. Earlier workers have interpreted the ridge to be a prominent hot spot trail. In the absence of conclusive data, the extension of the ridge towards its northern extremity below the thick Bengal Fan sediments was a matter of postulation. In the present study, interpretation of high resolution 2-D reflection data from the Mahanadi Offshore Basin, located in the northern part of the ridge, unequivocally indicates continuation of the ridge across the continent–ocean boundary into the slope and shelf tracts of the ECMI. Its morphology and internal architecture suggest a volcanic plume related origin that can be correlated with the activity of the Kerguelen hot spot in the nascent Indian Ocean. In the continental region, the plume related volcanic activity appears to have obliterated all seismic features typical of continental crust. The deeper oceanic crust, over which the hot spot plume erupted, shows the presence of linear NS aligned basement highs, corresponding with the ridge, underlain by a depressed Moho discontinuity. In the deep oceanic basin, the ridge influences the sediment dispersal pattern from the Early Cretaceous (?)/early part of Late Cretaceous times till the end of Oligocene, which is an important aspect for understanding the hydrocarbon potential of the basin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号